2月18日,在大洋彼岸的马斯克秀出最新大模型Grok 3当天,国产AI公司深度求索(DeepSeek)最新一篇论文引发关注,创始人梁文锋在署名之列,并2月16日提交到预印本平台arxiv。

通过NSA新架构,和Transformer原先传统的注意力机制相比,准确率相同或更高,处理64k标记序列时速度可提高至11.6倍,且训练更高效,所需算力更少。
值得注意的是,此次论文作者中,梁文锋在作者排名中位列倒数第二。而第一作者是袁景阳(Jingyang Yuan)。据公开信息,袁景阳目前是北京大学硕士研究生,研究领域包括LLM和AI for Science,目前是DeepSeek的实习生,据袁景阳个人主页,他在去年参与7篇论文的撰写。
此前,在发布Grok 3同时,马斯克透露,Grok 3的计算能力是Grok 2的10倍以上,训练过程累计消耗20万张英伟达GPU。而梁文锋的训练思路似乎与马斯克截然相反,更关注如何在更少算力消耗下,达到更好的计算效果。
有趣的是,对于马斯克坚持大力出奇迹的思路,另一家国内大模型独角兽“月之暗面”几乎在同时提出挑战。
2月18日,就在DeepSeek论文发布当天,月之暗面创始人杨植麟也带领团队发布最新论文《MoBA: MIXTURE OF BLOCK ATTENTION FOR LONG-CONTEXT LLMS(直译为“MoBA:面向长上下文大语言模型的块注意力混合方法”)》,提出了与NSA类似的稀疏注意力框架MoBA,并设计了一套可以自由切换全注意力和稀疏注意力机制的方式,为已有的全注意力模型更多的适配空间。
据介绍,MoBA是“一种将混合专家(MoE)原理应用于注意力机制的创新方法”,旨在提高长文本处理效率。经过Kimi平台验证,MoBA架构能将处理1M长文本的速度提升6.5倍,将处理10M长文本的速度提升16倍。
MoBA提升效率的关键手段在于仅关注部分键值。Kimi团队把完整的上下文划分成“块(block)”、让每个查询token自动关注最相关的KV(键值)块,从而实现长序列数据的高效处理,并提出一种新的top-k门控机制,无需额外训练参数,为每个查询token挑选出最相关的“块”,保证模型的注意力聚焦在包含最有用信息的“块”上。
Kimi团队表示,开展这项研究的原因在于,在传统注意力机制中,计算复杂度随着序列长度的增加而呈平方级增长,阻碍了模型对长序列的高效处理。MoBA架构能够轻松融入现有模型,不需要高昂的训练成本,并实现与全注意力模式的无缝切换。
国产AI竞赛正在日益加剧中。1月20日,中国AI初创公司深度求索(DeepSeek)推出大模型DeepSeek-R1。作为一款开源模型,R1在数学、代码、自然语言推理等任务上的性能能够比肩OpenAI o1模型正式版,并采用MIT许可协议,支持免费商用、任意修改和衍生开发等。春节假期后,国内多个行业龙头公司均宣布接入DeepSeek。
2月8日,QuestMobile数据显示,DeepSeek在1月28日的日活跃用户数首次超越豆包,随后在2月1日突破3000万大关,成为史上最快达成这一里程碑的应用。
DeepSeek的爆发正在重塑中国大模型行业,从过去的“烧钱换估值”转向关注技术性价比与商业化闭环。在这个日新月异的赛道,由DeepSeek引领的开源已成为大模型整体潮流,2月18日,阶跃星辰和吉利汽车联合宣布,将双方合作的阶跃两款Step系列多模态大模型向全球开发者开源。其中,包含目前全球范围内参数量最大、性能最好的开源视频生成模型阶跃Step-Video-T2V,以及行业内首款产品级开源语音交互大模型阶跃Step-Audio。
还没有评论,来说两句吧...